¿Y si no fuéramos los seres más inteligentes de la Tierra? Atención a los delfines.

¿Te imaginas que descubres que no somos los seres más inteligentes de la creación? Inmediatamente tu resorte lógico te hará cuestionar este artículo, pero no lo hagas. Igual es cierto. Igual existen seres mucho mas inteligentes que el ser humano entre nosotros.

Y no, no hace falta que visitemos planetas extrasolares para buscarlos. Los tenemos en casa. Sí, has oído bien. Los tenemos en casa. Son nuestros amados delfines.

Los Delfines tienen mayor capacidad cerebral que la nuestra. (1.6cm3, frente a 1.3cm3). Pero la cosa no va de peso, ni de IQ, ni de competencia esta vez.

Vamos a hablar de capacidades extendidas. Vamos a hablar de competencias cognitivas, emocionales y de autoconsciencia.

¿Realmente piensas que eres más inteligente que un delfín.?

Veamos. Hasta hace muy poco, creíamos que nuestra presencia era la más determinante. La cúspide de la pirámide de inteligencia en el planeta Tierra. Pero…Cometimos un error…El error de creer que nuestra capacidad de manipular la materia constituía nuestra base fundamental de medida de inteligencia. Creímos que el dominio, el sometimiento de las cosas era nuestro mejor baluarte, pero nos equivocamos.

Al mismo tiempo que hemos decidido desarrollar tecnologías, hemos renunciado a desarrollar capacidades. Y es eso lo que esencialmente nos diferencia con los delfines. Nosotros hemos desarrollado tecnologías. Ellos han desarrollado capacidades cognitivas, sin necesidad de manipular físicamente el medio.

Veamos ejemplos concretos basados en el interesante estudio presentado por  Branstetter BK, DeLong CM, Dziedzic B, Black A, Bakhtiari K (2016) Recognition of Frequency Modulated Whistle-Like Sounds by a Bottlenose Dolphin (Tursiops truncatus) and Humans with Transformations in Amplitude, Duration and Frequency. PLoS ONE 11(2): e0147512. doi:10.1371/journal.pone.0147512.

Comencemos….

1º.-Pongamos un grupo de humanos y delfines al mismo tiempo. 5 humanos y 5 delfines.  Un equipo totalmente equilibrado.

Enseñemos a los humanos a relacionar instrucciones con acciones y desarrollaremos una coreografía en un escenario, un baile (por ejemplo). Lo mismo haremos con los delfines.

Curiosamente los dos equipos tardarán el mismo tiempo en aprender la coreografía. La diferencia es que losprimeros la aprenderán en Tierra y los segundos en Agua. Pero la coreografía será idéntica.

El Director de la coreografía, soplará un sonido de comienzo y ambos equipos, comenzarán a lanzar la coreografía.

A).-El equipo A), humano, realizará la coreografía en términos que rozan la perfección, sin variar un ápice de las posiciones ensayadas previamente, tras horas de ensayo de la misma.

B).-El equipo B), delfines, realizará idéntica coreografía en el agua, rozando idéntica perfección, pero comenzando a evolucionar de forma sincronizada otras formas simétricamente perfectas que convolucionan de forma coordinada y totalmente creativa, en constante retroalimentación sin aparente pre-ensayo. Hasta el punto de tener que parar el movimiento, por dejar de ser comprensible, pero no por ello perfecto, pues somos incapaces de hacerlo.

2º.-Bien. En este punto, cambiarán las instrucciones y el sonido de comienzo subirá o bajará 1/2 tono. (Media octava). Se realizarán las actividades.

A).-El equipo A), humano, realizará la coreografía en términos idénticos a la anterior.

B).-El equipo B), delfines, realizará la coreografía igual, pero cometerá fallos de coordinación que implican que no todos los componentes del grupo, están coordinados en ese punto. Los delfines no muestran capacidad de modulación en los semitonos, frente a los humanos que reconocen las señales de los semitonos.

3º.-Ahora, cambiaremos un tono el espectro, de manera que todos ejecutarán la misma coreografía cambiando una octava en el espectro de sonido:

A).-El equipo A), humano, realizará la coreografía en términos que rozan la perfección, sin variar un ápice de las posiciones ensayadas previamente, tras horas de ensayo de la misma.

B).-El equipo B), delfines, realizará idéntica coreografía en el agua, rozando idéntica perfección, pero comenzando a evolucionar de forma sincronizada otras formas simétricamente perfectas que convolucionan de forma coordinada y totalmente creativa, en constante retroalimentación sin aparente pre-ensayo. Hasta el punto de tener que parar el movimiento, por dejar de ser comprensible, pero no por ello perfecto, pues somos incapaces de hacerlo.

El resultado es idéntico que en el primer punto. Los delfines nos superan en creatividad tonal, pero no en implementación semitonal. Esto significa que han desarrollado capacidades de comunicación telepática en el mismo espectro de onda. Nosotros no. A la inversa, nosotros hemos desarrollado capacidades de entrenamiento social con cambios de registro en semitonos, lo que implica variaciones de instrucciones orquestadas, y ellos no. Por contra, Ellos han desarrollado reconocimiento no verbal por resonancias de comunicación secuencial y rangos de convolución en la transformada de Fourier. Ellos saben con una sola instrucción,comunicarla de forma continua al resto e interpretar de forma simultanea la señal creando una sola instrucción multisecuencial de cumplimiento contínuo, absolutamente coordinada. Nosotros no sabemos/podemos hacer eso.

Ellos han desarrollado la telepatía social. Nosotros la comunicación grupal.

Dos facetas opuestas de una inteligencia muy compleja.

No podemos concluir que seamos más inteligentes que los delfines. Simplemente hemos desarrollado diferentes planos de la inteligencia. Tal es la razón que nos obliga a considerar como personas a los delfines. Merecen la misma o incluso superior condición que nosotros. Tal vez sea nuestro ego, el que no nos permita reconocer sus capacidades objetivas, pese a los innumerables experimentos realizados.

¿Sigues pensando que somos más inteligentes que los delfines?.

Creo que el futuro del ser humano, pasa por desarrollar las capacidades que tienen los delfines, si queremos avanzar a un estado superior de inteligencia.

Piensa en ello.

Ver y descargar estudio. “Recognition of Frequency Modulated Whistle-Like Sounds by a Bottlenose Dolphin (Tursiops truncatus) and Humans with Transformations in Amplitude, Duration and Frequency”

Fuente: Plos.org

StarViewerTeam 2017

 

 

Noc: La beluga blanca capaz de hablar con voz humana.

Sin duda uno de los grandes misterios de la ecolocación es la capacidad que tienen los delfines y las belugas para interactuar con el ser humano, sin que en ocasiones como el caso que vamos a exponer en el presente artículo, el ser humano sea capaz de comprender a tan inteligentes criaturas. En artículos anteriores ya examinamos las capacidades de estos mamíferos ancestrales y vimos cómo su cerebro está más desarrollado que el nuestro propio. El hecho de que no tengan capacidades hábiles en sus extremidades no significa que no hayan desarrollado un complejo sistema de inteligencia mucho más sofisticado que el nuestro.

En particular, el caso más avanzado es el de NOC, la beluga macho que ha conseguido imitar el lenguaje humano con complejos sonidos que inducen a pensar que intenta comunicarse con nosotros.

En 1984 los científicos de la Fundación Nacional de Mamíferos Marinos en San Diego , comenzaron a investigar  los inusuales ruidos emitidos por las belugas y los delfines en distancias largas para su comunicación. Las grabaciones resultaban semejantes a dos personas que conversaran en la distancia pero en un rango de frecuencias diferente al humano, sin que los investigadores fueran capaz de entender los sonidos.

Desde ese momento tomaron como referencia en la traza a Noc, un ejemplar masculino de beluga que decidieron analizar y estudiar interactuando con sus sonidos y su sistema de comunicación.

El descubrimiento de Noc fue accidental, ya que los buzos llegaron a pensar que era algún compañero de buceo el que estaba conversando en un lenguaje ininteligible pero al tiempo extrañamente humano.

El Análisis de los sonidos de Noc reveló un ritmo similar al diálogo humano. Las grabaciones fueron analizadas detenidamente, y revelaron frecuencias análogas al discurso humano pero repletas de oscilaciones armónicas que permitían viajar miles de millas en el océano. Las frecuencias de Noc diferían en varias octavas más graves respecto del típico sonido de los delfines y las belugas. De hecho asemejaba más el lenguaje humano. (1)

Seguidamente reproducimos el sonido procedente de Noc.

Son diversos los recientes estudios científicos que se han realizado sobre la vocalización humana de Noc, sin que hasta la fecha se haya conseguido descifrar el lenguaje. Aunque hasta la fecha, la mayoría de los estudios científicos sobre la materia, especulan con la hipótesis de mímica del sonido humano, lo cierto es que no resulta convincente el argumento de la imitación, sino más bien la capacidad de intentar comunicarse espontáneamente con los seres humanos. (2)

Por otra parte, los últimos estudios sobre la inteligencia de los delfines y las belugas, ponen de manifiesto que aún estamos muy lejos de comprender el alcance de la inteligencia de estos mamíferos que sin duda nos llevan millones de años de ventaja.

De hecho el estudio de los delfines y las belugas, constituye uno de los grandes paradigmas en los cambios del concepto de inteligencia en la neurociencia contemporánea.

Dejamos aquí algunas referencias científicas de interés para aquellos que deseen investigar y profundizar sobre el tema:

I.-Inteligencia humana e inteligencia de los delfines y belugas:

1. Development of cortical folding during evolution and ontogeny
Zilles, Karl / Palomero-Gallagher, Nicola / Amunts, Katrin, Trends in Neurosciences, 36 (5), p.275-284, May 2013
doi:10.1016/j.tins.2013.01.006
…subplate. Table 1 Brain size and gyrification index…Delphinus delphis Baird’s dolphin 722 3.99 [5] Tursiops…aduncus Pacific bottlenosedolphin 1498 4.75 [5] Globicephala…Grampus griseus Risso’s dolphin 1500 4.25 [5] a…consequence of increasing brain size across mammalian orders…
Published journal article available from   ScienceDirect
similar results

2.
Attributed to Charles Stangor Saylor.org
Apr 2013
Charles Stangor is professor and associate chair of psychology within the Social, Decisional, and Organizational Sciences Specialty Area at the University of Maryland. He has also taught at the New School for Social Research, Michigan State University, …
Courseware available from MIT
similar results

3.
Brain size in neonatal and adult Weddell seals: Costs and consequences of having a large brain
Eisert, Regina / Potter, Charles W. / Oftedal, Olav T., Marine Mammal Science, p.n/a-n/a, Apr 2013
doi:10.1111/mms.12033
Published journal article available from   Wiley-Blackwell
similar results

4.
Intelligence and embodiment: A statistical mechanics approach
Chinea, Alejandro / Korutcheva, Elka, Neural Networks, 40, p.52-72, Apr 2013
doi:10.1016/j.neunet.2013.01.007
…behaviors. In this picture, a dolphin imitates the behavior of a human by…the multiple definitions of intelligence ( Flynn, 2007; Sternberg…us with many examples of intelligence across species, comparing…Traditionally, one of the markers of intelligence for animals…
Published journal article available from   ScienceDirect
similar results

5.
The nature of visual self-recognition
Suddendorf, Thomas / Butler, David L., Trends in Cognitive Sciences, 17 (3), p.121-127, Mar 2013
doi:10.1016/j.tics.2013.01.004
…their lack of hands, the dependent variable was not reaching for the mark as required in the standard task. Given their brain size and the frequency with which they naturally see their reflections as they jump out of the water, it would not be surprising if…
Published journal article available from   ScienceDirect
similar results

6.
Characterization of hairless (Hr) and FGF5 genes provides insights into the molecular basis of hair loss in cetaceans
Chen, Zhuo / Wang, Zhengfei / Xu, Shixia / Zhou, Kaiya / Yang, Guang , BMC Evolutionary Biology, 13 (1), p.34, Feb 2013
doi:10.1186/1471-2148-13-34
Hair is one of the main distinguishing characteristics of mammals and it has many important biological functions. Cetaceans originated from terrestrial mammals and they have evolved a series of adaptations to aquatic environments, which are of …
Published journal article available from   BioMedCentral
similar results

7.
Cosmic Evolution – Epoch 7 – Cultural Evolution [22K]
Jan 2013
…the sole measure of intelligence. Small-bodied creatures…better measure of intelligence a comparison of brain…increase in relative brainsize and intelligence. These ratios furthermore…tests do imply that dolphin intelligence, to…
[https://www.cfa.harvard.edu/~ejchaisson/cosmic_evoluti…]
similar results

8.
Is There a Difference between the Brain of an Atheist and the Brain of a Religious Person?: Scientific American [150K]
Jan 2013
Andrew Newberg, director of research at the Myrna Brind Center of Integrative Medicine at Thomas Jefferson University and Hospital in Philadelphia, responds
[http://www.scientificamerican.com/article.cfm?id=is-th…]
similar results

9.
More on Cortical Folding and Intelligence | Serendip Studio [41K]
Jan 2013
…Folding and Intelligence The cerebral…increasing brain size (Macphail…of 2.86 dolphin and whale…What does “intelligence” mean…measuring brain size versus body…Equalize Brain Size Brain Slices…Fun Facts Intelligence Neuroscience…
[http://serendip.brynmawr.edu/exchange/brains/intellige…]
similar results

10.
The question of intelligence continues [9K]
Jan 2013
…studying brain & intelligence absolute size brain…irrelevant, then total brain size seems an obvious…4000-5000 g, dolphin brains around 1700…the largest total brain size, are therefore…with regards to intelligence and brain size
[http://serendip.brynmawr.edu/bb/kinser/Int2.html]
similar results

II.-Ecolocación e inteligencia. Frecuencias y comunicación entre delfines.

1. Whale interactions with Alaskan sablefish and Pacific halibut fisheries: Surveying fishermen perception, changing fishing practices and mitigation
Peterson, Megan J. / Carothers, Courtney, Marine Policy, 42, p.315-324, Nov 2013
doi:10.1016/j.marpol.2013.04.001
Abstract Whale depredation occurs when whales steal fish, damage fish or damage fishing gear. In Alaska, killer whales (Orcinus orca) and sperm whales ( Physeter macrocephalus ) primarily depredate on demersal sablefish ( Anoplopoma fimbria ) and …
Published journal article available from   ScienceDirect
similar results

2.
New acoustic model for humpback whale sound production
Adam, Olivier / Cazau, Dorian / Gandilhon, Nadege / Fabre, Benoît / Laitman, Jeffrey T. / Reidenberg, Joy S., Applied Acoustics, 74 (10), p.1182-1190, Oct 2013
doi:10.1016/j.apacoust.2013.04.007
…sound-producing anatomy are commonly used for many different animal species. Examples are the nasal complex of toothed whales forecholocation clicks [14] , the supra-laryngeal system for human and terrestrial animal formants, (e.g. Fant [22] for humans…
Published journal article available from   ScienceDirect
similar results

3.
Dolphin underwater bait-balling behaviors in relation to group and prey ball sizes
Vaughn-Hirshorn, Robin L. / Muzi, Elisa / Richardson, Jessica L. / Fox, Gabriella J. / Hansen, Lauren N. / Salley, Alyce M. / Dudzinski, Kathleen M. / Würsig, Bernd, Behavioural Processes, 98, p.1-8, Sep 2013
doi:10.1016/j.beproc.2013.04.003
Highlights • We characterized dolphin feeding behaviors at two study sites, and related behaviors to dolphin group and prey ball sizes. • Dolphins fed on larger prey balls in Argentina (maximum size >74 m 2 ) than they did in NZ (maximum size …
Published journal article available from   ScienceDirect
similar results

4.
First-spike latency in Hodgkin’s three classes of neurons
Wang, Hengtong / Chen, Yueling / Chen, Yong, Journal of Theoretical Biology, 328, p.19-25, Jul 2013
doi:10.1016/j.jtbi.2013.03.003
…simple spike-time model revealing that FSL coding can represent both monaural and binaural intensity cues and explained bat echolocationprocessing via FSL coding rather than rate coding ( Fontaine and Peremans, 2009 ). Recently, a number of theoretical studies…
Published journal article available from   ScienceDirect
similar results

5.
Of mice, moles and guinea pigs: Functional morphology of the middle ear in living mammals
Mason, Matthew J., Hearing Research, 301, p.4-18, Jul 2013
doi:10.1016/j.heares.2012.10.004
Abstract The middle ear apparatus varies considerably among living mammals. Body size, phylogeny and acoustic environment all play roles in shaping ear structure and function, but experimental studies aimed ultimately at improving our understanding of …
Published journal article available from   ScienceDirect
similar results

6.
Sound of fluids at low Mach numbers
Moon, Young J., European Journal of Mechanics – B/Fluids, 40, p.50-63, Jul 2013
doi:10.1016/j.euromechflu.2013.02.002
Abstract The sound of fluid at low Mach number is a special research area that poses diverse applications not only in aerodynamics but also in bio-medical or biological fluids. The related Mach numbers are in the order of O ( 1 0 − 2 ) …
Published journal article available from   ScienceDirect
similar results

7.
First Knockdown Gene Expression in Bat (Hipposideros armiger) Brain Mediated by Lentivirus.
Chen, Qi / Zhu, Tengteng / Jones, Gareth / Zhang, Junpeng / Sun, Yi, Molecular biotechnology, 54 (2), p.564-571, Jun 2013
doi:10.1007/s12033-012-9596-6
…cingulate cortex of H. armiger. FoxP2 is of major interest because of its role in sensorimotor coordination and probably in echolocation. Subsequent in situ hybridization validated the in vivo silencing of the target gene. This report demonstrates that LV-mediated…
MEDLINE/PubMed Citation on   MEDLINE
similar results

8.
Identification of the lateral position of a virtual object based on echoes by humans.
Rowan, Daniel / Papadopoulos, Timos / Edwards, David / Holmes, Hannah / Hollingdale, Anna / Evans, Leah / Allen, Robert,Hearing research, 300, p.56-65, Jun 2013
doi:10.1016/j.heares.2013.03.005
Echolocation offers a promising approach to improve the quality of life of people with blindness although little…research should extend these investigations to include other factors that are relevant to real-life echolocation.
MEDLINE/PubMed Citation on   MEDLINE
similar results

9.
Interplay of static and dynamic features in biomimetic smart ears
Mittu Pannala / Sajjad Zeinoddini Meymand / Rolf Müller , Bioinspiration & Biomimetics, 8 (2), p.026008, Jun 2013
doi:10.1088/1748-3182/8/2/026008
Horseshoe bats (family Rhinolophidae) have sophisticated biosonar systems with outer ears (pinnae) that are characterized by static local shape features as well as dynamic non-rigid changes to their overall shapes. Here, biomimetic prototypes fabricated …
Published journal article available from   IOP Publishing
similar results

10.
Effects of pile-driving on harbour porpoises (Phocoena phocoena) at the first offshore wind farm in Germany
Michael Dähne / Anita Gilles / Klaus Lucke / Verena Peschko / Sven Adler / Kathrin Krügel / Janne Sundermeyer / Ursula Siebert , Environmental Research Letters, 8 (2), p.025002, Jun 2013
doi:10.1088/1748-9326/8/2/025002
…means of 15 aerial line transect distance sampling surveys, from 2008 to 2010. Static acoustic monitoring (SAM) with echolocation click loggers at 12 positions was performed additionally from 2008 to 2011. SAM devices were deployed between 1 and 50 km from…
Published journal article available from   IOP Publishing
similar results

Fundación Eticotaku 2013.

——Notaciones del artículo——

(1).- El propio Sam Ridway neurobiólogo expone: “We were amazed — the voiceprint really reminded us of humanlike sounds and unlike normal whale sounds,” researcher Sam Ridgway, neurobiologist, research veterinarian and president of the National Marine Mammal Foundation, told LiveScience. “We never heard anything like this before.” Ver artículo en live science.

(2).-En el segundo sentido:  Tenemos “Spontaneous human speech mimicry by a cetacean” http://dx.doi.org/10.1016/j.cub.2012.08.044, 23 octubre de 2012. Sam Ridgway y Team.