Nuevas evidencias de Exotierras en zonas habitables de sistemas solares binarios.

Un nuevo estudio presentado el 10 de abril por Hui-Gen Liu, Hui Zhang y Ji-Lin Zhou, pone de relieve la posible existencia de 6 exoplanetas (Exotierras) orbitando sistemas de estrellas binarias, y su estabilidad orbital en la zona habitable.

En concreto, Kepler-16 b, 34 b, 35 b, 38 b, 47 b, c, que constituyen todos planetas del tamaño de Júpiter o Neptuno, permiten que en sus entornos exista una zona habitable que pueda estar influida por la fuerza gravitacional y la influencia de las emisiones de radiación estelar de las estrellas que orbitan. La cuestión fundamental reside en la amplitud de la zona habitable y su estabilidad, a diferencia de lo que inicialmente se pensaba.

ooextrasolar.105

En el estudio se analiza la estabilidad de un posible planeta habitable en cada uno de los sistemas binarios. Para ello han realizado simulaciones de estabilidad con una metodología que comprueba la estabilidad orbital combinando las diferentes fuerzas de gravedad de los planetas que orbitan las estrellas así como la radiaciones estelares de las estrellas.

De manera que los resultados que obtienen muestran que una exotierra habitable podría ser altamente posible en Kepler-16 ya que resultaría altamente estable en la zona habitable del sistema estelar. En el mismo sentido, también sería posible otra exotierra habitable en el límite de la zona habitable en Kepler-47.

Adicionalmente, Kepler-34,35 y 38, parecen también ser sistemas binarios candidatos a tolerar con una alta probabilidad potenciales exoplanetas habitables ubicados en la zona habitable de sus respectivas estrellas.

El estudio concluye que con las técnicas actuales de detección usadas, con una precisión de 0.001 días, podríamos detectar en los próximos 3 años una exotierra en Kepler-16b, tardaríamos unos 10 años en detectarlas en Kepler-34  y 38 y finalmente tardaríamos más de 10 años en detectarlas en Kepler-35 y 47.

En cualquier caso, y en base a los datos, la estabilidad de los sistemas estelares binarios se confirma óptima para la existencia de planetas habitables como la Tierra.

Bibliografía de Referencia y descarga del estudio completo.

Hui-Gen Liu, Hui Zhang, Ji-Lin Zhou (10 Apr 2013)

Earth and Planetary Astrophysics (astro-ph.EP)
Referencia de la Publicación:
2013, ApJ, 767, L38
DOI: 10.1088/2041-8205/767/2/L38
Citar como: arXiv:1304.2895 [astro-ph.EP]

Fundación EticoTaku 2013

 

Según algunos científicos, si el Sistema Solar no fuera binario, no podríamos explicarlo. Nibiru aportaría lógica y estabilidad al Sistema Solar al igual que la Mayoría de Sistemas Solares descubiertos.

La Mayoría de sistemas solares descubiertos que poseen sistemas planetarios, son binarios. Tal es el resultado del 80% de los Estudios concluidos por la comunidad  científica. De hecho existe una curiosa relación: Las órbitas de los planetas son menos excéntricas, cuando las estrellas están constituidas por sistemas binarios, ternarios o incluso cuaternarios.

Por tanto el mito de evidencias tales como Nibiru, el 10º Planeta, o cualesquiera otros eventos dependientes de la consecuencia del binarismo de nuestro Sistema Solar, aportaría mayor lógica y estabilidad al modelo, y al mismo tiempo explicaría de forma exacta, los procesos de excentricidad cíclica de la Tierra respecto al Sol, así como las desviaciones conocidas como reversiones geomagnéticas cíclicas, los calentamientos y enfriamentos globales, glaciaciones, etc…

En el ámbito estricto de las denominadas Ciencias Planetarias, existen una serie de cuestiones relativas a la esfericidad y composición de la Nube de Oort, que únicamente serian explicables con la existencia de un astro menor  que cada cierto tiempo no muy elongado en el tiempo, orbitara el Sol.  Entre esas cuestiones destacamos: La existencia de varios cinturones de asteroides en posiciones intercaladas, que marcan la división entre planetas Interiores y exteriores del Sistema Solar, así como a dispersión de las diferentes Lunas orbitando planetas, como Neptuno, Saturno, Júpiter, Marte  incluida nuestra Luna, lo que hace pensar en colisiones de masas planetarias o protoplanetarias hace miles de millones de años.

Para que esas colisiones tuvieran sentido, esos planetas deberían tener varias órbitas elípticas e intercaladas, y con el devenir de los tránsitos actuaban como elemento estabilizador de un sistema planetario en el que las órbitas de los planetas son prácticamente circulares, con la excepción de Plutón.

Ciertamente, esta circunstancia explicaría también el denominado”acantilado de Kuiper”, por lo que el conjunto de este modelo de tránsitos circulares con otros tránsitos elípticos, sería concordante con las observaciones de otros sistemas extrasolares vecinos, en los que la órbita de los planetas es circular, mientras que aquellos sistemas en los que no se ha constatado la existencia de otra u otras estrellas (es decir que no son binarios o ternarios) .

El modelo clásico de Oort, ha sido recientemente analizado y complementado por simulaciones lógicas que implicarian la presencia de un binarismo estelar. En tal sentido Iorio, Lissauer y otros, en diversos estudios y simulaciones han tratado de verificar el cambio del denominado impulso estelar, considerado como una variable cosmológica a tener en cuenta en los modelos avanzados y que no se habían considerado en los modelos clásicos.

Sobre la base de dichos modelos, hay un marco de referencia importante a tomar en consideración, que viene dado por la presencia de tres cometas que aportan luz en relación con sus órbitas: Hablamos de los cometas, Halley,Borrelly e Ilella-Zhang, cuya órbita presentamos en la imagen inferior:

La excentricidad de sus órbitas, se correspondería con un hipotético modelo en el que junto a planetas de órbita circular, podrían existir diversos planetas de órbita excéntrica, que podrían ser los causantes de esa peculiaridad.

De esta forma, diversos modelos de simulación encajarían en la lógica del modelo de forma simultanea, lo que implicaría la existencia de al menos tres objetos planetarios que encajarían hipotéticamente en ese modelo y que serían satélites “compartidos” de otra posible compañera del Sol (Enana Marrón) que se mantendría (En su máxima aproximación) en una franja de unas 220-260 UA del Sol. Coincidiría con lo que denominamos el acantilado de Kuiper, y explicaría por qué el giro del objeto va desplazando los cuerpos más exteriores hacia el interior de Kuiper, desde la parte más alejada de Oort, por lo que el punto más alejado de la EM estaría justo en esa posición, a una distancia de una 20.000UA. Ello explicaría la configuración de Oort, así como la dispersión y concentración de asteroides y cometas allí.

Este comportamiento explicaría la existencia del denominado acantilado de Oort y también la existencia de las lunas de Júpiter, Saturno y Neptuno y la órbita excéntrica de Plutón que cruza con la órbita de Urano.

La simulación presentada se basa en el  simulador de la Universidad de Colorado, determinando por cada elíptica una órbita, ya que estaríamos hablando de tres hipotéticos Planetas: X,Y y Z).

Tomando en consideración este simulador orbital, tendríamos de forma hipotética:

1º.-Planeta X: (El más interior).

Período orbital:2,926 años.
Excentricidad: 0,75.
Velocidad Media: 33,731 Km/segundo.
2º.-Planeta “Y”. Más exterior, con una órbita semejante a la que presenta el Cometa Borrelly.
 Los datos de este hipotético Planeta serían:
Período orbital:7,142 años.
Excentricidad: 0,75.
Velocidad Media: 23,383 Km/segundo.
Explicaría la dispersión-contracción del Cinturón central de asteroides, la formación de la Luna y de los satélites  de Júpiter.
3º.-Planeta “Z”. Órbita mucho más alejada.
Período orbital:253,142 años.
Excentricidad: 0,75.
Velocidad Media: 7,120 Km/segundo.

Modelo consolidado: El modelo consolidado, podría sugerir la siguiente hipótesis:

De acuerdo con todo lo anterior, tendríamos los siguientes esquemas de simulación del modelo:

Esquema de los Planetas “X” e “Y”, del modelo interior.  Observen debajo, el desplazamiento de las órbitas de estos planetas en cada rotación. Este desplazamiento sería el causante de la dispersión de los cometas y asteroides en el cinturón de asteroides ubicado entre Marte y Júpiter entre (2-2.5 UA).
El modelo presenta gran coherencia interna, ya que explica la actual configuración del Sistema Solar y el sistema de Oort.
Hipotéticamente, tendría sentido, ya que el acantilado de Oort y el cambio de densidad en la existencia de objetos rocosos y protoplanetarios vendría representado por una especie de efecto barrido lo que sugiere la presencia de un segundo cuerpo estelar que es el que le otorga esfericidad al modelo.
El siguiente diagrama muestra una simulación completa del modelo:
Justo en el diagrama superior tenemos la concepción clásica (actual ) de la Nube de Oort.

Debajo, superponemos las órbitas de los planetas interiores, del Planeta “z” y de la Enana Marrón, y tendríamos el siguiente diagrama:
Uno de los datos clave en el entendimiento del modelo, sería la órbita retrógrada de Venus, respecto al resto de los planetas del Sistema Solar.

¿Por qué El cometa Borrelly es clave?.

El cometa presenta varias peculiaridades incompatibles con un modelo basado en la actual concepción del Sistema Solar, que induce a pensar en un binarismo estelar así como en otros planetas orbitando de forma altamente excéntrica y perpendicular a la elíptica. La cuestión reviste un interés científico sin precedentes en el campo de la cosmología, ya que explicaría la existencia del cinturón interior de asteroides, el cinturón de Kuiper, el denominado acantilado de Kuiper, las fuerzas de repulsión y contracción anómalas de las sondas espaciales  y la configuración de la nube de Oort. 

Pero no sólo queda aquí, por primera vez encajaría el denominado impulso estelar y galáctico, así como la fuerza de proyección y la densidad de concentración de elementos cometarios  y asteroides , la exacta posición de los cinturones y la anomalía de Plutón y su órbita.(Recordemos el estudio presentado en 2010 por  John J. Matese, Daniel P. Whitmire Título: Evidencia persistente de una compañera del Sol con masa superior a Júpiter en la Nube de Oort.)

 Los datos del Cometa Borrelly:
La peculiariedad del cometa, reside en su órbita:
INCLINACIÓN 30,3°
ARGUMENTO DEL PERIASTRO 1,35 UA
SEMIEJE MAYOR 3,59 UA
EXCENTRICIDAD 0,967990
PERIASTRO O PERIHELIO 1,35 UA
APOASTRO O AFELIO 5,83 UA
PERÍODO ORBITAL SIDERAL 6,8 años
ÚLTIMO PERIHELIO 22 de julio de 20081
PRÓXIMO PERIHELIO 28 de mayo de 20151
Conjuntmente con la órbita de otros cometas como el Halley :
Implican una secuenciación de diferentes cuerpos que conformarían las estructuras de los diferentes cinturones de Asteroides y su conformación, especialmente en lo que respecta al cinturón de asteroides.
Por tanto, según parece el hecho del binarismo del Sistema solar sería algo que estabilizaría las órbitas de los planetas interiores, generando un micro hábitat más estable que si el sistema no fuera binario.  El hecho de que desconozcamos aún la configuración y complejidad de nuestro sistema solar, no implica que al conocer otros sistemas solares de nuestro vecindario, no seamos capaces de entender y modelizar la excentricidad de planetas que orbitan una sola estrella.

Lo cierto es que al analizar esos sistemas solares, observamos altos grados de excentricidad en sus planetas, así como lla presencia de fuerzs de Gravedad irregulares, motivadas por la atracción de grandes Planetas de magnitud superior a Júpiter al Interior de la estrella, con períodos orbitales de 9 días en alguns casos, y con planetas exteriores que describen órbitas con excentricidades superiores a 1.8, frente a una excentricidad de casi 1, como es el caso de los planetas de nuestro sistema solar.

Tomemos modelos de Sistemas solares Binarios.

II.El sistema del Centauro (Alfa Centauri). Planteamiento y datos astrofísicos disponibles:

Se trata de los tres vecinos estelares más cercanos Sol que se encuentran en la esquina sureste de la constelación de Centaurus, el Centauro. Proxima Centauri (o Alfa Centauri C)está sólo 4,22 años luz  de distancia (14:29:42.95-62:40:46.14,), pero es demasiado débil para ser visto a simple vista. Las dos estrellas brillantes, Alpha Centauri A y B (14:39:36.5-62:50:02.3 y 14:39:35.1-60:50:13.8, ), están un poco más lejos en alrededor de 4,36 años luz.  Forman un sistema binario separado “en promedio” por sólo 24 veces la distancia Tierra-Sol – un promedio orbital no presencial o semi-eje mayor de 23,7 unidades astronómicas (UA) que es sólo ligeramente mayor que la distancia entre Urano y el Sol .

Próxima (Centauri “C”) se encuentra alrededor de 15.000 + / – 700 UA de las estrellas A y B. Realizando un giro en órbita elíptica, en una máxima aproximación de unas 10.000 UA de ambas estrellas.

a).-Análisis del sistema binario A-B Alfa Centauri. 

La distancia que separa a Alpha Centauri A  de su estrella compañera B  es en promedio de 23,7 unidades astronómicas (semi-eje mayor de 17.57 ”, con unaestimación de la distancia HIPPARCOS de 4,40 años-luz). Los cambios de las estrellas entre (Máxima aproximación y alejamiento 11,4 y 36,0 unidades astronómicas de distancia,respectivamente  en una órbita altamente elíptica (e = 0,52) que lleva casi 80 (79,90) años en completarse y se inclinan en un ángulo de 79,23 º desde la perspectiva de un observador en la Tierra(ver Pourbaix et al, 2002 o 2000 en el Catálogo de las órbitas de Visual binarios; y Worley y Heintz, 1983). Visto desde un hipotético planeta alrededor de cualquiera de estrellas, el brillo de los aumentos como el enfoque aumenta y disminuye a medida que se alejan. Sin embargo, la variación en el brillo se considera que es insignificante para la vida en los hipotéticos  planetas alrededor de ambas estrellas. En su máximo acercamiento, las estrellas A y B estarían casi dos UA más lejos que la distancia media orbital de Saturno alrededor del Sol, mientras que su mayor separación la distancia ascendería a seis UA más lejos que la distancia media orbital de Neptuno. Alpha Centauri A y B podrían tener cuatro planetas interiores rocosos como los del Sistema Solar: Mercurio (0.4 UA), Venus (0,7 UA), la Tierra (1 UA) y Marte (1.5UA).

Condiciones de habitabilidad: De hecho, el sistema AB es mucho más rico ( de 1,7 a 1,8 veces) en elementos más pesados ​​que el hidrógeno (“alta metalicidad”) que nuestro  Sistema Solar tal y como expusieron (Chmielewski et al, 1992; Cayrel de Strobel et al, 1991, página 297;Furenlid y Meylan, 1984, y Flannery y Ayres, 1978). Por lo tanto, tanto en las estrellas A y/o B  podría haber de uno a cuatro planetas en zonas orbitales donde el agua líquida es posible.

El sistema Centauri A y B fue seleccionado como dos de las estrellas objetivo entre las 100 más idóneas para la misión TPF. Recordemos que la NASA suspendió indefinidamente el Proyecto Terrestrial Planet Finder (TPF) para proporcionar imágenes directas de pequeños planetas rocosos en órbitas de tipo terrestre habitable debido a causas presupuestarias.

b).Las estrellas del sistema.

1.-Alfa Centauri A.

Rigil Kentaurus (“Pie del Centauro” en árabe) es la cuarta estrella más brillante en el cielo nocturno, así como la  más brillante en la constelación de Centaurus. Al igual que Sol, es de un color amarillo-anaranjado  y luminosidad de tipo G2 V.  Tiene alrededor de 1,105 ± 0,007 veces la masa de Sol (Guedes et al, 2008; y Thévenin et al, 2002) y  su diámetro es de 1,23 veces el del Sol. (ESO Science Release, y Demarque et al, 1986), aproximadamente 52 a 60 por ciento más brillante que el Sol (ESO ciencia yDemarque et al, 1986).

Sin tener en cuenta las restricciones sísmicas interiores entre las estrellas (A y B) y su interacción gravitacional,  Alfa Centauri A ha sido estimada en alrededor de 6.90 millones de años de antigüedad (+ / – un 10 por ciento más que la antigüedad de nuestro Sol que se estima en 4.85 mil millones de años) o 6.8 mil millones de años en caso de que careciera de un núcleo convectivo (Guenther y Demarque, 2000). Los últimos modelos recientes aplicando las limitaciones sísmicas y gravitacionales del sistema (A+B), sugieren que las estrellas A y B podrían tener entre 5,6 hasta 5,9 mil millones años de edad. (Mutlu Yildiz, 2007). Alfa Centauri A es extremadamente similar a nuestro Sol, con cerca de mil millones de años más de antigüedad, lo que favorecería la aparición de vida y su desarrollo con anterioridad a nuestro sistema solar.

Los cálculos de que Weigert y Holman (1997) indican que la distancia a la estrella en la que un planeta de tipo terrestre podría contener  el agua líquida y los ingredientes para el desarrollo de temperaturas adecuadas para la vida, se centran alrededor de 1,25 UA (1,2 a 1,3 UA) – a medio camino entre las órbitas de los la Tierra y Marte en el Sistema Solar  con un periodo orbital de 1.34 años con cálculos basados ​​en Hart (1979).   Cálculos más recientes basados ​​en Kasting et al (1993),permiten una más amplia “zona habitable”.  El borde interior de la zona habitable de la estrella A podría situarse en torno a 1,17UA de la estrella, mientras que el borde borde exterior está a unas 2,33 UA.

2.-Alfa Centauri B.-

Los cálculos de Weigert y Holman (1997) indican que la distancia a la estrella en la que un planeta de tipo Tierra  podría albergar el agua líquida se centran alrededor de 0,73 a 0,74 UA – (un poco más allá de la distancia orbital de Venus en el Sistema Solar) – con un periodo orbital de un año  terrestre según los cálculos basados ​​en Hart (1979). Cálculos más recientes basados ​​en Kasting et al (1993), permiten una mayor “zona habitable”. Las estimaciones proporcionadas por  la base de datos de exoplanetas,  para esta clase  de  estrella de tipo espectral K – (que debe ser el borde interior de la zona habitable de estas estrellas) estaría situado en torno a 0,50 UA de la estrella, mientras que el borde borde exterior se encontraría a unos 1,10 UA.

A).-Vecindario inmediato: Menos de 5 años luz:

B).-Vecindario entre 10-20 años Luz:

C).-Vecindario entre 20 y 33 años luz del Sol.

D).-Vecindario entre 34 -69 Años Luz del Sol

 

Visualicemos los diversos sistemas estelares y podremos comprobar que la mayoría cuenta con sistemas binarios, ternarios y o cuaternarios.

Tomemos por ejemplo como base el sistema de (Iota Pegasi 2)  (Constituido por dos estrellas de características análogas al Sol).

Otro de los innumerables casos interesantes es: HR 8501-AB)
En fin, la lista de sistemas binarios es interminable y en todos ellos se aprecia una estabilidad mayor que en los sistemas que carecen de compañeros estelares. Por tanto constituyen mayoría respecto de los sistemas estelares aislados.
Lo que induce a cada vez más científicos, a apoyar las teorías de Lissauer, Matese , Iorio, entre muchos otros. La cuestión hace pensar precisamente que no tiene sentido pensar en teorías apocalípticas en el caso de confirmar ese binarismo, ya que lo más probable según las evidencias es precisamente que gracias a ese binarismo exista la actual estabilidad y equilibrio cíclico de nuestro Sistema Solar. Más bien al contrario, si nuestro sistema no fuera binario, no estaríamos aquí, debido a la inestabilidad orbital y excentricidad de las órbitas de los planetas.
En el mismo sentido les dejamos algunos interesantes estudios sobre estabilidad de sistemas Binarios y su capacidad para albergar planetas:
1. The Habitability and Stability of Earth-Like Planets in Binary Star Systems
Troup, Nicholas, dissertation, Oct 2012
…Planets in Binary Star Systems… The Habitability and Stability…Planets in Binary Star Systems…binary star system, Kepler…Critical BinarySeparation for Planet Habitability in S-Type…3.1.1 System Parameter…
[http://dspace.udel.edu:8080/dspace/handle/19716/11563]
similar results

2.
Dynamical Stability and Habitability of Gamma Cephei Binary-Planetary System
Haghighipour, Nader, article, Sep 2005
…semimajor axis of the binary, as well as the orbital…previous studies of this system and indicate that, for the values of the binaryeccentricity smaller…larger values of the binary eccentricity, the system becomes gradually unstable…
Full text article available from E-Print ArXiv
similar results

3.
HABITABILITY OF EARTH-MASS PLANETS AND MOONS IN THE KEPLER-16 SYSTEM
B. Quarles / Z. E. Musielak / M. Cuntz , The Astrophysical Journal, 750 (1), p.14, May 2012
doi:10.1088/0004-637X/750/1/14
…the U.S.A. HABITABILITY OF EARTH-MASS…THE KEPLER-16 SYSTEM B. Quarles…around a stellar binary, by investigating…remarkablebinary system containing…of planets in binary and multi…The Kepler-16 system consists of two…the possible habitability of the system
Published journal article available from   IOP Publishing
similar results

4.
Formation, Dynamical Evolution, and Habitability of Planets in Binary Star Systems
Haghighipour, Nader, article, Aug 2009
…research on planets in binary star systems. This chapter…dynamical evolution and habitability, as well as the mechanisms…planets in and around binary stars, and with discussions…Formation, Properties, Habitability. Editor: John Mason…
Full text article available from E-Print ArXiv
similar results

5.
An Analytic Method to determine Habitable Zones for S-Type Planetary Orbits in Binary Star Systems
Eggl, Siegfried / Pilat-Lohinger, Elke / Georgakarakos, Nikolaos / Gyergyovits, Markus / Funk, Barbara, article, Apr 2012
…planets discovered in and around binary star systems, questions concerning…strong dependence of permanent habitability on the binary‘s eccentricity, as well as…towards the secondary in close binary systems. Comment: submitted…
Full text article available from E-Print ArXiv
similar results

6.
Habitability of Earth-type Planets and Moons in the Kepler-16 System
Quarles, Billy / Musielak, Zdzislaw E. / Cuntz, Manfred, article, Feb 2012
…demonstrate that habitable Earth-mass planets and moons can exist in the Kepler-16 system, known to host a Saturn-mass planet around a stellar binary, by investigating their orbital stability in the standard and extended habitable zone…
Full text article available from E-Print ArXiv
similar results

7.
AN ANALYTIC METHOD TO DETERMINE HABITABLE ZONES FOR S-TYPE PLANETARY ORBITS IN BINARY STAR SYSTEMS
Siegfried Eggl / Elke Pilat-Lohinger / Nikolaos Georgakarakos / Markus Gyergyovits / Barbara Funk , The Astrophysical Journal, 752 (1), p.74, Jun 2012
doi:10.1088/0004-637X/752/1/74
…radiative aspects of habitability as defined in KWR93…introduces three exemplary binary–planet configurations…as test-cases forhabitability considerations. Section…re- quirements that binary–planet configurations…fulfill in order to ensure system stability. In Section…
Published journal article available from   IOP Publishing
similar results

8.
Pervasive orbital eccentricities dictate the habitability of extrasolar earths.
Kita, Ryosuke / Rasio, Frederic / Takeda, Genya, Astrobiology, 10 (7), p.733-741, Sep 2010
The long-term habitability of Earth-like planets requires…Earth-like planet in a stellar binary system is well understood, the effect of a binaryperturbation on a more realistic system containing additional gas-giant…
MEDLINE/PubMed Citation on   MEDLINE
similar results

9.
Dynamical habitability of planetary systems.
Dvorak, Rudolf / Pilat-Lohinger, Elke / Bois, Eric / Schwarz, Richard / Funk, Barbara / Beichman, Charles / Danchi, William / (…) / White, Glenn J, Astrobiology, 10 (1), p.33-43, Jan 2010
…prior to discussion of the dynamical structure of the more than 350 known planets. The difference with regard to our own Solar System with eight planets on low eccentricity is evident in that 60% of the known extrasolar planets have orbits with eccentricity…
MEDLINE/PubMed Citation on   MEDLINE
similar results

10.
Extreme Habitability: Formation of Habitable Planets in Systems with Close-in Giant Planets and/or Stellar Companions
Haghighipour, Nader, article, Nov 2007
…new grounds. Unlike our solar system, the stars of many of these…moderately close ( < 40 AU) binary or multi-star systems. The…would be so destructive that binary stars and also systems with…of moderately eccentric close binary stars. Comment: 6 pages…
Full text article available from E-Print ArXiv
similar results
Como verán, el binarismo y ternarismo estelar es muy habitual ahí fuera, y la existencia de binarias en sistemas sollares es un factor de estabilización, no un factor apocalíptico.
Tal vez sea el miedo del ser humano a modificar los parámetros de lo que hasta ahora creía conocer lo que desencadene un miedo injustificado a reconocer sistemas dinámicos nuevos. Ese espíritu apocalíptico viene más de la reticencia a reconocer modelos novedosos tratando de evaluar las variables nuevas con parámetros y leyes científicas obsoletas. El estudio de los exoplanetas y de los sistemas planetarios externos, nos está enseñando que el Universo está lleno de sistemas estables, de entornos planetarios ordenados, de sistemas binarios que albergan sistemas planetarios estables en nuestro propio vecindario estelar. Al igual que en la Edad Media existía el miedo a afirmar que la Tierra giraba al rededor del Sol y que era esférica, hoy existe el mismo miedo a afirmar que el sistema Solar sea Binario, con las mismas consecuencias que en la Edad Media. Lo cierto es que conocemos muy poco del Cosmos, y a medida que lo vamos conociendo nos damos cuenta de lo mucho que nos queda por conocer de él. Una cosa sí parece segura: El Binarismo estelar es mucho más probable y estable que a soledad estelar.
Saquen sus propias conclusiones.
StarviewerTeam International 2012.

La misión Kepler descubre el primer planeta como la Tierra orbitando un sistema binario.

El binarismo estelar es mucho más frecuente de lo que esperábamos ahí fuera. De hecho aporta estabilidad e incluso una capacidad de generación de entornos viables a largo plazo. Tal es la conclusión de los expertos de la misión Kepler, que en esta ocasión, manifiestan el hallazgo del primer exoplaneta candidato a ser como la Tierra en un sistema binario, a 4.900 años/Luz de la Tierra, en la Constelación de Cygnus.  Kepler 47-C orbita a una distancia de unos 303 días, lo que le sitúa en la zona habitable, para que el agua pueda existir.

El descubrimiento es tan reciente, que implicaría una clara reconstrucción de los modelos que hasta la fecha hemos venido comprendiendo como clásicos.

Los futuros días nos darán mayores datos sobre la misión, la aportación al conocimiento y los planetas adicionales que se descubran.

Puede verse una animación del sistema en http://www.nasa.gov/multimedia/videogallery/index.html?media_id=151299651

1.-http://www.nasa.gov/multimedia/videogallery/index.html?media_id=151299651

2.
NASA – NASA Releases Kepler Data on Potential Extrasolar Planets [21K]
Jun 2010
NASA’s Kepler Mission has released 43 days of science data on more than 156,000 stars.
[http://www.nasa.gov/topics/universe/features/kepler201…]
similar results

3.
Actualité Le premier transit multiple d’exoplanètes découvert par Kepler [228K]
Futura-Sciences, Sep 2010
…information’)” onmouseout=”killlink()” temps une conférence sur un intriguant système planétaire découvert récemment par Kepler . C‘est fait : l’agence spatiale américaine vient d’annoncer, non pas une exoterre habitable comme certains s’y attendaient…
[http://www.futura-sciences.com/fr/news/t/astronomie/d/…]
similar results

4.
Auroral research ; Nothing exists, nor happens in the visible sky, that is not sensed in some hidden manner by the faculties of …
Scourfield, M. W. J., Astrophysics and Space Science, 230 (1-2), p.457-469, Aug 1995
doi:10.1007/BF00658202

Nuestra Galaxia está repleta de planetas como la Tierra.

Un interesante estudio presentado por Lars A. Buchhave y su equipo científico de la Universidad de Copenhagen, en la edición de la Revista Nature de Junio , analiza la formación y origen de los planetas rocosos observados por la misión Kepler.

Como en los estudios anteriores, en esta ocasión los investigadores examinaron 226 candidatos planetarios procedentes de 152 sistemas solares diferentes procedentes del recuento y catalogación realizado por la misión Kepler. Mas de 3/4 de esos planetas candidatos son menores que Neptuno, (4 veces el diámetro de la Tierra) y algunos de ellos son incluso de tamaño similar a la Tierra.

Los astrónomos estudian la formación de estos planetas en el espectro estelar, pues debido al disco protoplanetario, cuando el nivel de elementos pesados es elevado, la tendencia es propicia a la formación de los planetas rocosos, tal y como expone  Buchhave.  En cambio, cuando la composición es elevada en metales, la tendencia es a la formación de Planetas del Tipo Júpiter. Por tanto dependiendo de la estrella, pueden darse o no las condiciones para la formación de los planetas Terrestres. Los resultados de la misión Kepler tras analizar 226 candidatos de 150 sistemas solares diferentes, podemos aseverar que los planetas terrestres se forman incluso en estrellas que tienen un contenido cuatro veces menor de metales que nuestro Sol, lo que haría de los planetas Terrestres la regla general en la formación de planetas en nuestra Galaxia y por tanto un auténtica incubadora de vida ahí fuera.

En palabras del propio  Buchhave, la hipótesis de vida extraterrestre más allá de nuestro sistema Solar, está cada vez más reforzada a la luz de los nuevos hallazgos estudiados, ya que al menos 3/4 partes de os Sistemas Solares analizados, podrían albergar planetas Terrestres con tamaños que oscilan entre el de la Tierra hasta aquellos ligeramente inferiores a Neptuno.

Las zonas de habitabilidad también encajan con la formación de dichos planetas, lo que nos sugiere un amplio espectro de posibilidades y lugares donde buscar, una vez que ya sabemos que la formación de los planetas terrestres se produce preferentemente en entornos estelares incluso cuatro veces más pobres en metales que el nuestro.

Respecto al tiempo necesario para la formación de planetas Terrestres, se requeriría un mínimo de unos 2.000 a 3000 millones de años desde el nacimiento de las estrellas anfitrionas, lo que encaja bastante bien con los estudios que hasta ahora conocemos respecto de nuestro Sistema Solar.

La lista no es “numerus clausus”. Hablamos de listas abiertas en las que cada vez aparecerán nuevos datos que nos permitirán indagar nuevas conclusiones, respecto a la formación, composición y antigüedad de estos planetas y la composición de sus soles, etc…

Recordemos que hace apenas dos años, a la luz de los primeros datos de la misión Kepler , el Dr. Sasselov ya abrió la veda al afirmar en una polémica rueda de prensa que nuestra Galaxi estaba llena de Planetas capaces de albergar vida.

El estudio de Lars A. Buchhave y su equipo, viene a confirmar empíricamente y a ampliar con datos mucho más precisos que los aportados entonces por Sasselov, sus afirmaciones.

Seguidamente reproducimos un diagrama de algunos de los datos de la misión Kepler, indicativos de lo que ya Sasselov expusiera en agosto de 2010.

Especial mención merecen los Planetas denominados Kepler-20  correspondiente a un Sistema con tres Planetas rocosos.

El mayor de los tres tiene 1.43 veces el radio de la Tierra y 2.9 veces su volumen. Los otros dos, respectivamente tienen 1.03 y 0.87 veces e radio de la Tierra. Kepler 20 es un sistema binario de estrellas. De ellos el último Kepler F, parece contener una composición rica en elementos metálicos y vapor de Agua.

Ver Detalle del estudio sobre Kepler 20:

Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth’s radius (R_⊕ plus), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R_⊕) and the other smaller than the Earth (0.87R_⊕), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.

Dada la ingente documentación sobre la materia, recomendamos la lectura de las siguientes referencias bibliográficas detalladas:

I.-Referencias a los hallazgos de la misión Kepler y análisis de los sistemas exoplanetarios.

1. TRANSIT TIMING OBSERVATIONS FROM KEPLER. II. CONFIRMATION OF TWO MULTIPLANET SYSTEMS VIA A NON-PARAMETRIC CORRELATION ANALYSIS
(…) Jason H. Steffen / Joshua A. Carter / Francois Fressin (…) Borucki / Stephen T. Bryson / Lars ABuchhave / Christopher J. Burke / Douglas A. Caldwell / (…) / the Kepler Science Team , The Astrophysical Journal, 750 (2), p.113, May 2012
doi:10.1088/0004-637X/750/2/113
…Printed in the U.S.A. TRANSIT TIMING OBSERVATIONS FROM KEPLER. II. CONFIRMATION…MULTIPLANET SYSTEMS VIA A NON-PARAMETRIC CORRELATION…Stephen T. Bryson5 , Lars A. Buchhave10,11…Bill Wohler8 , and the Kepler Science Team 1 Astronomy…
Published journal article available from   IOP Publishing
similar results

2.
KEPLER-14b: A MASSIVE HOT JUPITER TRANSITING AN F STAR IN A CLOSE VISUAL BINARY
Lars ABuchhave / David W. Latham / Joshua A. Carter / Jean-Michel Désert / Guillermo Torres / Elisabeth (…) David R. Ciardi / Craig Kulesa / (…) / Ronald (…) , The Astrophysical Journal Supplement Series, 197 (1), p.3, Nov 2011
doi:10.1088/0067-0049/197/1/3
…AN F STAR IN A CLOSE VISUAL BINARY Lars A. Buchhave1…parameters. Kepler-14b (KOI-98…2011 November Buchhave et al. 0.998 0.999 1…2011 November Buchhave et al. Figure…optics images of Kepler-14, showing a 2 × 2 field of…
Published journal article available from   IOP Publishing
similar results

3.
Kepler-22b: A 2.4 EARTH-RADIUS PLANET IN THE HABITABLE ZONE OF A SUN-LIKE STAR
(…) Fressin / Guillermo Torres / Douglas A. Caldwell / Jørgen Christensen-Dalsgaard (…) Still / Jill Tarter / Sarah Ballard / Lars A.Buchhave / (…) / Mia (…) , The Astrophysical Journal, 745 (2), p.120, Feb 2012
doi:10.1088/0004-637X/745/2/120
…reserved. Printed in the U.S.AKepler-22b: A 2.4 EARTH-RADIUS PLANET IN THE…Jill Tarter3 , Sarah Ballard4 , Lars A. Buchhave19,20 , Josh Carter21…time-series photometry from NASA’s Kepler spacecraft reveals a transiting…
Published journal article available from   IOP Publishing
similar results

4.
KEPLER-18b, c, AND d: A SYSTEM OF THREE PLANETS CONFIRMED BY TRANSIT TIMING VARIATIONS, LIGHT CURVE VALIDATION, WARM-SPITZER …
(…) Stephen T. Bryson / Joshua A. Carter / David R. Ciardi (…) Knutson / K. Kinemuchi / John A. Johnson / Jon M. Jenkins (…) III / Eric B. Ford / (…) / Natalie (…) , The Astrophysical Journal Supplement Series, 197 (1), p.7, Nov 2011
doi:10.1088/0067-0049/197/1/7
…Printed in the U.S.AKEPLER-18b, c, AND d: A SYSTEM OF THREE PLANETS…Douglas Caldwell4,11 , Lars Buchhave23,24 , Timothy…nasa.gov, Douglas.A.Caldwell@nasa.gov…star, which we designate Kepler-18. The transit signals…
Published journal article available from   IOP Publishing
similar results

5.
KEPLER-20: A SUN-LIKE STAR WITH THREE SUB-NEPTUNE EXOPLANETS AND TWO EARTH-SIZE CANDIDATES
(…) Guillermo Torres / Francois Fressin / Leslie A. Rogers / Jean-Michel Désert / Lars ABuchhave / David W. Latham / Samuel N. Quinn / (…) / Elliott P. Horch (…) , The Astrophysical Journal, 749 (1), p.15, Apr 2012
doi:10.1088/0004-637X/749/1/15
…reserved. Printed in the U.S.AKEPLER-20: A SUN-LIKE STAR WITH THREE SUB-NEPTUNE…Rogers5 , Jean-Michel D´esert2 , Lars A. Buchhave6,7 , David W. Latham2…ABSTRACT We present the discovery of the Kepler-20 planetary system, which we…
Published journal article available from   IOP Publishing
similar results

6.
KEPLER-21b: A 1.6 R Earth PLANET TRANSITING THE BRIGHT OSCILLATING F SUBGIANT STAR HD 179070Based in part on observations …
(…) Christensen-Dalsgaard / Yvonne Elsworth / Rafael A. García / Günter Houdek / Christoffer (…) Molenda-Żakowicz / Michael J. Thompson / Graham A. Verner / (…) / Mark Everett (…) , The Astrophysical Journal, 746 (2), p.123, Feb 2012
doi:10.1088/0004-637X/746/2/123
…reserved. Printed in the U.S.AKEPLER-21b: A 1.6 REarth PLANET TRANSITING THE…Lissauer2 , David W. Latham4 , Lars A. Buchhave22,35 , Thomas N. Gautier…2012 January 31 ABSTRACT We present Kepler observations of the bright (V…
Published journal article available from   IOP Publishing
similar results

7.
A closely packed system of low-mass, low-density planets transiting Kepler-11 : Nature : Nature Publishing Group [120K]
Feb 2011
…Next abstract A closely packed…transiting Kepler-11 Jack J…Marcy 5 Jerome A. Orosz 6 Jason…Bryson 1 Lars ABuchhave 9 DouglasAKepler-11b and Kepler-11c may have…Torres, Joshua A. Carter…Copenhagen, Denmark Lars ABuchhave McDonald Observatory…
[http://www.nature.com/doifinder/10.1038/nature09760]
similar results

8.
KEPLER-15b: A HOT JUPITER ENRICHED IN HEAVY ELEMENTS AND THE FIRST KEPLER MISSION PLANET CONFIRMED WITH THE HOBBY-EBERLY …
Michael Endl / Phillip J. MacQueen / William D. Cochran / Erik J. Brugamyer / Lars ABuchhave / Jason Rowe / Phillip Lucas / (…) / William (…) , The Astrophysical Journal Supplement Series, 197 (1), p.13, Nov 2011
doi:10.1088/0067-0049/197/1/13
…reserved. Printed in the U.S.AKEPLER-15b: A HOT JUPITER ENRICHED IN HEAVY ELEMENTS AND THE FIRST KEPLER MISSION PLANET CONFIRMED WITH THE HOBBY…Cochran1 , Erik J. Brugamyer2 , Lars A. Buchhave3 , Jason Rowe4 , Phillip…
Published journal article available from   IOP Publishing
similar results

9.
Kepler-16: a transiting circumbinary planet.
(…) Doyle, Laurance R / Carter, Joshua A / Fabrycky, Daniel C / Slawson, Robert (…) Winn, Joshua N / Orosz, Jerome A / Prša, Andrej / Welsh, William F (…) Latham, David / (…) / Fortney, Jonathan (…) , Science (New York, N.Y.), 333 (6049), p.1602-1606, Sep 2011
We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across…comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its…
MEDLINE/PubMed Citation on   MEDLINE
similar results

10.
Kepler-20: A Sun-like Star with Three Sub-Neptune Exoplanets and Two Earth-size Candidates
(…) Guillermo / Fressin, Francois / Rogers, Leslie A. / Désert, Jean-Michel / BuchhaveLars A. / Latham, David W. / Quinn, Samuel N. / (…) / Barclay (…) , article, Jan 2012
…transit signals in the Kepler light curve of the…4220194. We find a stellar effective…false positive by a factor of 2e5 (Kepler-20b), 1e5 (Kepler-20c…4.5um, we infer a ratio of the planetary…075+-0.015 (Kepler-20c) and 0.065…
Full text article available from E-Print ArXiv

II.-Referencias al nuevo estudio publicado por Nature y relativo a la formación de planetas rocosos en Sistemas estelares.

Star Lite: You Don’t Need Heavy Metals to Build a Good Planet
http://www.time.com/time/health/article/0,8599,2117179,00.html#ixzz1xxAF65dg

III.-Referencias adicionales sobre el hallazgo y Últimos estudios relevantes:

1. Low metal stars may nurture Earthlike worlds
Grossman, Lisa, New Scientist, 214 (2869), p.11, Jun 2012
doi:10.1016/S0262-4079(12)61527-9
…makes sense because a proto-planetary…planets. There was a problem, though…survey team led by Lars Buchhave of the University…identified by the Kepler Space Telescope , to…composition. Stars with a metal content as low…
Published journal article available from   ScienceDirect
similar results

2.
KIC 1571511B: a benchmark low-mass star in an eclipsing binary system in the Kepler field★
Ofir, A. / Gandolfi, D. / BuchhaveLars / Lacy, C. H. S. / Hatzes, A. P. / Fridlund, Malcolm, Monthly Notices of the Royal Astronomical Society: Letters, 423 (1), p.L1-L5, Jun 2012
doi:10.1111/j.1745-3933.2011.01191.x
Published journal article available from   Wiley-Blackwell

3.
ALMOST ALL OF KEPLER‘S MULTIPLE-PLANET CANDIDATES ARE PLANETS
Jack J. Lissauer / Geoffrey W. Marcy / Jason F. Rowe / Stephen T. Bryson / Elisabeth Adams / Lars ABuchhave / David R. Ciardi / (…) / Ronald L. Gilliland (…) , The Astrophysical Journal, 750 (2), p.112, May 2012
doi:10.1088/0004-637X/750/2/112
…reserved. Printed in the U.S.A. ALMOST ALL OF KEPLER’S MULTIPLE-PLANET CANDIDATES…Bryson1 , Elisabeth Adams4 , Lars A. Buchhave5,6 , David R. Ciardi7…that the overwhelming majority of Kepler candidate multiple transiting systems…
Published journal article available from   IOP Publishing
similar results

4.
TRANSIT TIMING OBSERVATIONS FROM KEPLER. II. CONFIRMATION OF TWO MULTIPLANET SYSTEMS VIA A NON-PARAMETRIC CORRELATION ANALYSIS
(…) Jason H. Steffen / Joshua A. Carter / Francois Fressin (…) Borucki / Stephen T. Bryson / Lars ABuchhave / Christopher J. Burke / Douglas A. Caldwell / (…) / the Kepler Science Team , The Astrophysical Journal, 750 (2), p.113, May 2012
doi:10.1088/0004-637X/750/2/113
…Printed in the U.S.A. TRANSIT TIMING OBSERVATIONS FROM KEPLER. II. CONFIRMATION…MULTIPLANET SYSTEMS VIA A NON-PARAMETRIC CORRELATION…Stephen T. Bryson5 , Lars A. Buchhave10,11…Bill Wohler8 , and the Kepler Science Team 1 Astronomy…
Published journal article available from   IOP Publishing
similar results

5.
TRANSIT TIMING OBSERVATIONS FROM KEPLER. IV. CONFIRMATION OF FOUR MULTIPLE-PLANET SYSTEMS BY SIMPLE PHYSICAL MODELS
(…) B. Ford / Jason H. Steffen / Jason F. Rowe / Joshua A. Carter / Althea V. Moorhead / Natalie M. Batalha / William J. Borucki / (…) / William (…) , The Astrophysical Journal, 750 (2), p.114, May 2012
doi:10.1088/0004-637X/750/2/114
…Valenti & Fischer 2005), as well as a newly formulated analysis called SPC (L. ABuchhave et al., in preparation), to obtain…and when possible v sin i. For Kepler-31 we did not obtain a spectrum, but instead adopted these…
Published journal article available from   IOP Publishing
similar results

6.
Transit Timing Observations from Kepler. IV. Confirmation of Four Multiple-planet Systems by Simple Physical Models
Fabrycky, Daniel C. / Ciardi, David R., article, May 2012
…Valenti & Fischer 2005), as well as a newly formulated analysis called SPC (L. ABuchhave et al., in preparation), to obtain…and when possible v sin i. For Kepler-31 we did not obtain a spectrum, but instead adopted these…
Full text available from Caltech
similar results

7.
Almost All of Kepler‘s Multiple-planet Candidates Are Planets
Lissauer, Jack J. / Marcy, Geoffrey W. / Rowe, Jason F. / Bryson, Stephen T. / Adams, Elisabeth / BuchhaveLars A. / Ciardi, David R. / (…) / Geary (…) , article, May 2012
…Logo CaltechAUTHORS A Caltech Library Service…Login Almost All of Kepler‘s Multiple-planet…and Adams, Elisabeth and BuchhaveLars A. and Ciardi, David…2012) Almost All of Kepler‘s Multiple-planet…
Full text available from Caltech
similar results

8.
QATAR-2: A K DWARF ORBITED BY A TRANSITING HOT JUPITER AND A MORE MASSIVE COMPANION IN AN OUTER ORBIT
Marta L. Bryan / Khalid A. Alsubai / David W. Latham / Neil (…) Cameron / Samuel N. Quinn / Joshua A. Carter / Benjamin J. Fulton / (…) / Gilbert A. Esquerdo (…) , The Astrophysical Journal, 750 (1), p.84, May 2012
doi:10.1088/0004-637X/750/1/84
…Marta L. Bryan1 , Khalid A. Alsubai2 , David W. Latham3…Samuel N. Quinn3 , Joshua A. Carter3,12 , Benjamin…Berlind3 , Warren R. Brown3 ,Lars A. Buchhave6,7 , Michael…contrast to that found by Kepler for multi-transiting systems…
Published journal article available from   IOP Publishing
similar results

9.
The Transiting Circumbinary Planets Kepler-34 and Kepler-35
Welsh, William F. / Orosz, Jerome A. / Carter, Joshua A. / Fabrycky, Daniel C. / Ford, Eric B. / Lissauer (…) Natalie / Bloemen, Steven / (…) / Caldwell, Douglas A (…) , article, Apr 2012
…additional transiting circumbinary planets, Kepler-34 and Kepler-35. Each is a low-density gas giant planet on an orbit…two Sun-like stars every 289 days, while Kepler-35 orbits a pair of smaller stars (89% and 81% of the…
Full text article available from E-Print ArXiv
similar results

10.
Transit timing observations from Kepler – III. Confirmation of four multiple planet systems by a Fourier-domain study of …
(…) Daniel C. / Ford, Eric B. / Carter, Joshua A. / Désert, Jean-Michel / Fressin, Francois (…) Batalha, Natalie M. / Borucki, William J. /BuchhaveLars A. / (…) / Ciardi, David R (…) , Monthly Notices of the Royal Astronomical Society, 421 (3), p.2342-2354, Apr 2012
doi:10.1111/j.1365-2966.2012.20467.x

StarViewerTeam International 2012.

Mapa y distancias de las estrellas más cercanas a nuestro sol.

Nuestro vecindario estelar está poblado de estrellas. La mayoría de ellas son binarias. En el siguiente esquema, reproducimos un mapa de nuestro sector y junto a cada estrella, la simulación de rotaciones binarias conocidas.

En amarillo, vemos las estrellas similares al sol, de secuencia principal. (El sol es una estrella amarilla-naranja G2 V).

Mapa de las estrellas más próximas
Mapa de las estrellas más próximas

 

El siguiente cuadro, ilustra las distancias y características de las estrellas más cercanas al sol.

NStar /
RECONS /
HIPPARCOS
Distance (ly)
Name or
Designation
Spectral &
Luminosity
Type
Solar
Masses
Constellation Notes
0.00 Sol G2 V 1.000 8+ planets, dust, brown dwarf b?
Alpha Centauri 3
4.22 Proxima Centauri M5.5 Ve 0.123 Centaurus Flare star; brown dwarf b?
4.40 Alpha Centauri A G2 V 1.09-1.10 Centaurus a(AB)=23.7 AUs
4.40 Alpha Centauri B K0-1 V 0.907 Centaurus Sep(AB)=11.4-36.0 AUs
5.96 Barnard’s Star M3.8 Ve 0.17- Ophiuchus V2500 Ophiuchi, old star
7.78 Wolf 359 M5.8 Ve 0.092-0.13 Leo CN Leonis, flare star
8.31 Lalande 21185 M2.1 Vne 0.46 Ursa Major Flare & thick disk star; 3 planets?
Sirius 2
8.60 Sirius A A0-1 Vm 2.02-2.14 Canis Major Dust, a=19.8 AUs, e=0.59
8.60 Sirius B DA2-5 1.00-1.03 Canis Major White dwarf
Luyten 726-8 AB
8.72 Luyten 726-8 A M5.6 Ve 0.10-0.11 Cetus BL Ceti, flare Star
8.72 UV Ceti M6.0 Ve 0.10 Cetus Flare star, a=5.5 AUs, e=0.62
9.68 Ross 154 M3.5 Ve 0.17 Sagittarius V1216 Sagittarii, flare star  

Puede observarse, que la mayoría de las estrellas de nuestro entorno, son binarias, y curiosamente, en 2009, recientes descubrimientos basados en  J.Murray y J.Matese, han demostrado que el sol tiene una enana marrón, orbitando cada 3630 años, con una órbita bastante parecida a la que realiza Próxima Centauri, respecto a Alfa Centauri A) y Alfa Centauri B).

Si se analiza detalladamente el diagrama arriba expuesto, Cada sistema binario muestra diferentes tipos de rotación, que oscilan entre rotaciones circulares sincronizadas, como el caso de Centauri, Sirio y Proycon, y rotaciones elípticas, con alto grado de ecentricidad como el caso de Cygni A y CygniB.

La mayoría de las estrellas conocidas, son sistemas formados por dos, tres o incluso cuatro estrellas, combinando sistemas de rotación sincronizada, con rotaciones elípticas, e incluso sólo rotaciones elípticas.

Aunque la ciencia Oficial lo descarta, J. J. Lissauer, realizó un completo análisis en el que demostró que el comportamiento elíptico de los cometas y asteroides procedentes de Oort, sólo podían explicarse, por la presencia de una Enana Marrón del tamaño de 3 a 13 masas de Júpiter. En concreto, la incidencia de esta compañera estelar, sería la única explicación al comportamiento, perturbaciones y órbitas de los planetas del sistema solar.

El siguiente diagrama, procedente del estudio científico “censurado” del Dr. Lissauer, explica las perturbaciones del modelo binario, por comparación con otras estrellas binarias que rotan elípticamente a su estrella principal. Junto al Impulso producido por el eje galáctico, existe el impulso estelar de la enana marrón.

Impulso galáctico e Impulso estelar
Impulso galáctico e Impulso estelar

  En estos momentos, este hecho es una de las mayores polémicas de la ciencia actual, pues la concepción ortodoxa, mantiene el modelo no binario del sistema solar.

 

Fuente: